
PHYSICAL REVIEW E, VOLUME 64, 026409
Transport properties in a two-temperature plasma: Theory and application
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An alternate derivation of transport properties in a two-temperature plasma has been performed. Indeed,
recent works have shown that the simplified theory of transport properties out of thermal equilibrium intro-
duced by Devoto and then Bonnefoi, very often used in two-temperature modeling, is questionable and
particularly does not work when calculating the combined diffusion coefficients of Murphy. Thus, in this paper,
transport properties are derived without Bonnefoi’s assumptions in a nonreactive two-temperature plasma,
assuming chemical equilibrium is achieved. The electron kinetic temperatureTe is supposed to be different
from that of heavy speciesTh . Only elastic processes are considered in a collision-dominated plasma. The
resolution of Boltzmann’s equation, thanks to the Chapman-Enskog method, is used to calculate transport
coefficients from sets of linear equations. The solution of these systems allows transport coefficients to be
written as linear combinations of collision integrals, which take into account the interaction potential for a
collision between two particles. These linear combinations are derived by extending the definition and the
calculation of bracket integrals introduced by Chapmanet al. to the thermal nonequilibrium case. The obtained
results are rigorously the same as those of Hirschfelderet al. at thermal equilibrium. The derivation of
diffusion velocity and heat flux shows the contribution of a new gradient, that of the temperature ratiou
5Te /Th . An application is presented for a two-temperature argon plasma. First, it is shown that the two-
temperature linear combinations of collision integrals are drastically modified with respect to equilibrium.
Secondly, the two-temperature simplified theory of transport coefficients of Devoto and Bonnefoi underesti-
mates the electron thermal conductivity with respect to the accurate value atTe520 000 K. Lastly, contrary to
the simplified theory of transport coefficients, the diffusion coefficients satisfy the symmetry conditions. An
example is given atTe56000 K for different values ofu for the diffusion coefficient between electrons and
heavy speciesDe-Ar as well as for that between argon atoms and argon ionsDAr-Ar1.

DOI: 10.1103/PhysRevE.64.026409 PACS number~s!: 52.25.2b
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I. INTRODUCTION

The wide variety of experimental devices that gener
thermal plasmas, namely high-intensity arcs, thermal rf d
charges, or microwave discharges@1#, has allowed the devel
opment, for the past 30 years, of numerous applications, s
as deposition, cutting, welding, surface modifications, he
ing ~ladles or tundishes!, extractive metallurgy, waste de
struction, etc.@2,3#. In spite of the great strides in the deve
opment of plasma processes, the growth of th
technologies, as stated by Pfender for plasma spraying@4#,
has been ‘‘relatively slow for two reasons: there is still a la
of a solid engineering base in terms of control, reproducti
ity and optimization of thermal processes; and there is on
limited range of applications that appear to be economic
viable, based on present technology.’’ That is why, since
1960s, many efforts have been devoted to modeling t
backed by measurements, have not only enhanced
knowledge base but also have made and should make e
tial contributions towards removing sources of the previou
mentioned obstacles that hamper the growth of this tech
ogy. To simulate the plasma flow within the current-carryi
area or the plasma jet, knowledge of thermodynamic
transport properties is a prerequisite. However, the reliab
of these simulations is strongly dependent on the accurac
these data, especially the transport coefficients being us

The theory of transport properties of nonreactive gase
thermal equilibrium is based on the resolution of Bol
1063-651X/2001/64~2!/026409~20!/$20.00 64 0264
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mann’s equation due to the Chapman-Enskog method.
distribution function of different species is assumed to b
Maxwellian distribution function perturbed by a first-ord
perturbation function. The latter is developed in the form
a series of Sonine polynomials, and is used to express,
cording to the chosen approximation order, the transport
efficients as determinants depending on collision integ
taking into account the interaction potential between two c
liding species.

Since the 1960s, thermal and electrical conductivities,
viscosity, have been widely calculated at thermal equilibriu
for pure or binary nonreactive plasma-forming gases~see, for
example,@5–10#! and more recently for reactive gases@11#.
Such equilibrium calculations have allowed a better und
standing of the plasma flow neglecting diffusion phenome
The difficulty with diffusion is the number of coefficients t
be considered: 1

2 K(K21) ordinary diffusion coefficients
Di j and (K21) thermal diffusion coefficientsD1

T , K being
the number of species to be considered in the plasma.
example, in a binary mixture of N2 and H2, at least 10 spe-
cies have to be considered. Diffusion was taken into acco
only in the 1990s thanks to the combined diffusion coe
cients of Murphy@12#. He has used the properties of th
diffusion coefficients,Di j 5D ji andD j

T52D j
T , in a binary

mixture to describe the diffusive mixing of two nonreactiv
ionized gasesA andB at thermal equilibrium, and he define
combined diffusion coefficientsDAB

x , DAB
T , andDAB

p , respec-
©2001 The American Physical Society09-1
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tively, due to concentration, temperature, and pressure gr
ents ~depending onDi j and Di

T!. This method has allowed
him to explain demixing processes in an Ar-H2 free-burning
arc @13,14#. Similar calculations were also performed for a
Ar-N2 free-burning arc@15#, showing that demixing causes
significant increase in the nitrogen mass fraction in the c
tral region out to a radius of 1 mm.

However, during the past two decades, with the grow
development of spectroscopic or laser scattering techniq
for plasma diagnostics, it has been shown that in ther
plasmas used in the different processes, nonequilibrium
more the rule than the exception. The electron kinetic te
peratureTe can be different from that of heavy speciesTh
because of, on the one hand, the huge mass difference
tween these two kinds of particles and, on the other hand
high mobility of electrons in an electric field compared
that of heavy species. The fraction of kinetic energy e
changed during a collision between an electron and a he
species is so weak that an equilibrium state with two te
peratures can be defined when collisions are not too num
ous. In such a case, the two-temperature plasma compos
and the related thermodynamic functions can be obtai
@16–20#.

For example, Farmeret al. @21# have presented evidenc
for departures from local thermodynamical equilibriu
~LTE! in the region near the cathode in an argon free-burn
arc. Haidar @22# has also noted this situation as well
Tanakaet al. @23#. According to these authors, deviation
from LTE are due to the cold gas, which penetrates by
Maecker effect into the arc plasma. Bouazizet al. @24# have
also shown the departure from LTE in the vicinity of th
anode of an argon-transferred arc for cutting or welding
plications. In general, in the dc arc electrode vicinity, no
equilibrium always prevails@25#. André et al. @26# have
shown by spectroscopic analysis that nonequilibrium also
ists in an inductively coupled plasma torch working at le
than a kW supplied power level with argon as a plasm
forming gas. Chenet al. @27# have put the emphasis on th
diffusion of electrons from the core of a plasma jet to
fringes, resulting in a strong departure from LTE in this r
gion. To conclude from the few presented examples, m
authors have highlighted departures from LTE in very diff
ent experimental conditions.

To predict mass, energy, and momentum transfer in p
mas out of thermal equilibrium, experimental studies
usually combined with modeling. Nevertheless, the num
cal data, which give two-temperature transport coefficie
~excluding diffusion!, used to solve the mass, energy, a
momentum equations, are very rare. Indeed, in 1981, C
et al. @28# have recognized the lack in the literature of tw
temperature reliable transport coefficients and used appr
mate data for a two-temperature modeling of the anode c
traction in an atmospheric pressure argon plasma. Fift
years later, Charradaet al. @29# calculated electrical and ther
mal conductivities and viscosity from data given by H
schfelderet al. @5# at thermal equilibrium that they hav
adapted to the two-temperature modeling of a mercury h
pressure plasma. Jenistaet al. @30#, developing a two-
temperature modeling of the anode region in high-curr
02640
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electric arcs, have used the expressions of Spitzer-Ha¨rm @31#,
giving the electrical and thermal conductivities, as well
the thermal binary diffusion coefficients. However, these f
mulas have been derived at thermal equilibrium, in t
1950s, for a fully ionized plasma@32#. In his very recent
nonequilibrium modeling of transferred arcs, Haidar@33# has
used the two-temperature transport coefficients of Dev
@34,35#. Also very recently, Gonzaleset al. @36# have pre-
sented a two-temperature modeling high-voltage SF6 cir
breaker using also transport coefficients calculated from
voto’s work. Thus, many models use either very crude
proximations of two-temperature transport coefficients, of
adapted from equilibrium calculations, or the only availab
two-temperature theory of transport properties, which is t
of Devoto @34,35#.

Devoto @34,35# has derived the transport coefficients in
two-temperature plasma starting from a simplified kinetic a
proach. He has assumed that the distribution function
heavy species is weakly affected by electrons during co
sions so that the change, during collision, of the first-or
perturbation function of heavy species is much smaller th
that of electrons. He has then obtained simplified express
for the different fluxes of mass, momentum, and ener
which has allowed us to separate the calculation of trans
coefficients of electrons and heavy species. However, B
nefoi @37,38# has shown that the definition given by Devo
of the vectordW i including the driving forces for diffusion did
not check the closure relationship( i 51

N dW i50W in the descrip-
tion of the two-temperature plasma. He has developed
adapted formalism to this alternate definition, but stays in
simplified kinetic approach. It has to be noted that the tra
port coefficients of Devoto have been applied at therm
equilibrium as well as out of thermal equilibrium since th
assumption of the large mass difference between elect
and heavy particles always stands. Indeed, transport co
cients of electrons have only to be affected by the elect
temperatureTe , whereas those of heavy species by hea
species have to be affected by the temperatureTh because of
the uncoupling between electrons and heavy species.
ease of use of Devoto’s formulas explains why so ma
models use his theory. It seems that Devoto’s assumpt
are valid at thermal equilibrium since a good agreemen
observed when comparing thermal conductivity and visc
ity coefficient calculated from the complete expressions a
those from the simplified ones@35#.

Nevertheless, as soon as diffusion is taken into accoun
a two-temperature model, it has been shown@39# that the
application of combined diffusion coefficients as defined
Murphy at equilibrium@12# and calculated using Devoto’
simplified theory leads to unphysical results even whenTe
tends towardsTh . When using the simplified theory of trans
port coefficients of Devoto, the symmetry relationshi
DAB

x 5DBA
x andDAB

T 52DBA
T are not fulfilled when the ion-

ization degree exceeds 10%@39#. This simplified theory is
therefore not adapted to account for diffusion in a multite
perature plasma.

This paper is aimed at deriving diffusion coefficient
thermal conductivity, and viscosity coefficients in a tw
9-2
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TRANSPORT PROPERTIES IN A TWO-TEMPERATURE . . . PHYSICAL REVIEW E 64 026409
temperature plasma, that is, when the kinetic temperatur
electronsTe is different from that of heavy speciesTh , with-
out Devoto’s assumptions. The developed theory dem
strates, at least for argon, for which calculations have b
performed, that Devoto’s theory underestimates the ther
conductivity. Two-temperature diffusion coefficients, whi
to our knowledge no theory provides with accuracy, will a
low us to derive in particular two-temperature combined d
fusion coefficients used to describe demixing in free-burn
arcs@13#, which is neglected by most two-temperature mo
els. Indeed, Murphyet al. @40#, comparing spectroscopi
measurement and an equilibrium numerical model that ta
into account diffusion, have shown that two-temperature
mixing cannot be a negligible process. The numerical mo
underestimates by almost 50% the hydrogen mass frac
with respect to measurements on the axis at 1 mm below
cathode in a region where departures from LTE prevail. M
phy et al. @40# attribute this discrepancy in part to transpo
coefficients that should be calculated in nonequilibrium c
ditions. It has to be noted that Jansen@41# has taken into
account diffusion processes based on Stefan-Maxwell e
tions in a two-temperature plasma@42# in a numerical simu-
lation model for a hydrogen-cascaded arc plasma. Howe
in this hydrodynamic approach, the linear system of eq
tions for diffusive mass fluxes with respect to the ma
averaged velocity of the mixture is not solved exactly and
effective binary diffusion approximation is used. Kolesnik
et al. @43,44# have presented an accurate self-consistent
of Stefan-Maxwell equations for multicomponent diffusio
in a two-temperature plasma, but, unfortunately, no num
cal result has been displayed to our knowledge. Moreo
when defining the combined diffusion coefficients, Murp
has used diffusion coefficients obtained from the resolut
of Boltzmann’s equation rather than those resulting from
hydrodynamic approach.

The presented derivation is based on the resolution
Boltzmann’s equation of each species in a nonreactive m
ture due to the Chapman-Enskog method@6#. It is assumed
that the electron temperatureTe is higher than that of heavy
speciesTh , their difference being characterized by their ra
u5Te /Th .

The chemical state of the plasma is frozen~no chemical
reaction between the different species! and the chemica
equilibrium is supposed to be achieved. The composition
the two-temperature plasma is supposed to be known e
though the disagreement between authors@17,45–51# dealing
with the generalized Saha equation, the Gibbs free-en
minimization, or the calculation kinetic method of compo
tion highlights the difficulty of defining the ‘‘equilibrium
state’’ of a two-temperature plasma.

Moreover, the energy transfers are limited to elastic c
lisions in a collision-dominated plasma. The ‘‘elastic’’ Knud
sen number is much smaller than unity, regardless of
considered species in the mixture. Radiation is
considered.

First, we will present the resolution of Boltzmann’s equ
tion due to the Chapman-Enskog method adapted to n
equilibrium plasma and leading to the introduction of sets
linear equations allowing us to calculate the distributi
02640
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functions. The derivation of diffusion velocity, heat flux, an
tensor of pressure will be performed. It will be shown th
the derivation of diffusion velocity as well as that of he
flux introduces a new gradient due to the temperature r
u5Te /Th and that two-temperature diffusion coefficients b
tween electrons and heavy species can be defined contra
the simplified theory of Devoto.

The results of derivations of bracket integrals, indispe
able for the calculation of transport coefficients out of th
mal equilibrium, will also be presented, as well as the de
nition of collision integrals introducing a collision effectiv
temperatureTi j* between electrons and heavy species.

To validate this theory, an application is given for a tw
temperature argon plasma, often used in experimental
vices as shown previously. Accurate two-temperature tra
port coefficients are calculated. Important discrepanc
between our results and those of the simplified theory
Devoto are obtained, showing then that the latter canno
applied in two-temperature plasma.

Appendix A defines mathematical notations used in
following expansions. Appendix B gives more deta
about the calculations of bracket integrals.

II. RESOLUTION OF THE BOLTZMANN’S EQUATION

A. Preliminary definitions

If t is the time,mi , rW, andvW i are, respectively, the mass
the space vector, and the velocity of a particle of thei th
species,FW i is the external force acting on it, andf i(rW,vW i ,t) is
the distribution function of this species, the following de
nitions are adopted.

The index 1 is for electrons,

ni5E f i~rW,vW i ,t !dvW i , ~2.1!

ni being the number density of thei th species;

vW i5
1

ni
E vW i f i~rW,vW i ,t !dvW i , ~2.2!

vW i being the mean velocity of thei th species.
If the mixture containsN different species, the mass av

erage velocityvW 0 is defined as follows:

vW 05
1

r (
i 51

N

nimivW i , ~2.3!

r being the density of the plasma,r5( i 51
N r i , with r i

5nimi the density of thei th species.
The peculiar and the reduced velocities defined for

temperatureTi are, respectively, written as

VW i5vW i2vW 0 , ~2.4!

WW i5S mi

2kTi
D 1/2

VW i . ~2.5!
9-3
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The total pressurep of the plasma, assumed to be a p
fect gas, is defined according to Dalton’s law, wherek is
Boltzmann’s constant,

p5(
i 51

N

pi , ~2.6!

where

p15n1kTe , ~2.7!

pi5nikTh ~ i>2!. ~2.8!

p1 and pi ( i>2) are, respectively, the partial pressures
electrons and heavy species. The following operator is a
introduced:

D

Dt
5

]

]t
1vW i•¹W 1

FW i

mi
•¹W vW i

. ~2.9!

In many of the following developments, the temperatureTi
will be associated to thei th species. However, in the realist
case of a two-temperature plasma,Ti5Te if i 51 and Ti
5Th if i>2.

B. Resolution of Boltzmann’s equation

The resolution of Boltzmann’s equation is based on
Chapman-Enskog expansion@6#.

1. Subdivision of Boltzmann’s equation

The distribution functionf i of the i th species is the solu
tion of the integrodifferential equation of Boltzmann@5#:

D f i

Dt
5(

j 51

N E E E ~ f i8 f j82 f i f j !gb db d« dvW j . ~2.10!

f i8 is the distribution function after collision of thei th spe-
cies,g is the relative velocity of the speciesi andj, andb and
« are, respectively, the impact parameter and the incide
azimuthal angle.

The mixture can be characterized by the knowledge of
unknownsni , vW 0 , Te , and Th by solving the equations o
continuity, momentum, and energy obtained from Bol
mann’s equation. These equations of change are derived
cording to the chosen approximation order for the distrib
tion function of different species. When inserting
Maxwellian distribution function, which corresponds to th
zero-order approximation, into the equations of change,
obtained Euler equations can be solved and each flux of
lecular properties vanishes. If the first-order approximat
of the distribution function is introduced into the equatio
of change, the Navier-Stokes equations are obtained.
system then requires the calculation of transport coefficie
to be solved. The equations of change out of thermal e
librium have been derived in Ref.@37#.

Thus, it will be assumed that the zero-order approxim
tion function is Maxwellian atTe for electrons andTh for
heavy species. The distribution function of thei th species,
02640
-

f
o

e

ce

e

-
ac-
-

e
o-
n

is
ts
i-

-

the solution of Eq.~2.10!, is approximated by a Maxwellian
distribution functionf i

(0) perturbed byF i such asuF i u!1,
which is the first-order perturbation function of thei th spe-
cies with the temperatureTi :

f i5 f i
~0!~11F i !. ~2.11!

Inserting Eq.~2.11! into Eq. ~2.10!, it can be shown that

D f i
~0!

Dt
5I i

~0!1(
j 51

N E E E f i
~0! f j

~0!@~F i81F j8!Ki2F i2F j #

3gb db d« dvW j . ~2.12!

According to the Chapman-Enskog method, whose the
sumptions are recalled, for instance, in Ref.@52#, the Max-
wellian f i

(0) and the unknownsF i are assumed to vary
slowly in space and time over a distance of a mean free p
and over the time of a mean free flight. This assumpt
justifies, in a first approximation, neglecting the derivativ
of F i as well as of products ofF i with derivatives off i

(0) on
the left-hand side of Eq.~2.12!.

I i
(0) represents the zero-order approximation of Chapm

Enskog’s expansion and does not vanish for two collid
particles with different temperatures:

I i
~0!5(

j 51

N E E E ~ f i8
~0! f j8

~0!2 f i
~0! f j

~0!!gb db d« dvW j .

~2.13!

I i
(0) will be introduced into the calculation of the left-han

side of Eq.~2.12!.
A term Ki(Wi ,u i j ), taking into account the thermal non

equilibrium when electrons and heavy species collide,
been introduced as follows:

f i8
~0! f j8

~0!5 f i
~0! f j

~0!Ki~Wi ,u i j ! ; i , j P@1;N#,
~2.14!

where

Ki~Wi ,u i j !5exp„2~Wi8
22Wi

2!~12u i j !… ~2.15!

with

u i j 5
Ti

Tj
~2.16!

andWi8 is the reduced velocity after collision.
However, it has to be noted thatKi5K j and, of course,

when two species with the same temperature collide,Ki
51. The introduction ofKi allows the definition of bracke
integrals to be generalized out of thermal equilibrium.

The calculation ofD f i
(0)/Dt and D f i

(0)/Dt ( i>2) is ob-
tained using the equations of change@37#.

For electrons, it is shown that
9-4
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D f 1
~0!

Dt
5 f 1

~0!F ~W1
22 5

2 !VW 1•¹W ln Te12WW 1
oWW 1 :¹W vW 0

1
Q1

~0!

n1kTe
~ 2

3 W1
221!1

VW 1

n1kTe
•S r1

r (
j 51

N

njFW j2n1FW 1

2
r1

r
¹W p1¹W p1D G . ~2.17!

For heavy species (; i>2), it is shown that

D f i
~0!

Dt
5 f i

~0!F ~Wi
22 5

2 !VW i•¹W ln Th12WW i
oWW i :¹W vW 0

2
Q1

~0!

~n2n1!kTh
~ 2

3 Wi
221!1

VW i

nikTh
•S r i

r (
j 51

N

njFW j

2niFW i2
r i

r
¹W p1¹W pi D G , ~2.18!

where

Q1
~0!5(

j 52

N E E E E 1
2 m1

3~V18
22V1

2! f 1
~0! f j

~0!gb db d« dvW idvW j . ~2.19!

Q1
(0) corresponds to the exchanged kinetic energy betw

electrons and heavy species during collisions. It can be
culated using variable changes similar to those given in
pendix B. Neglecting the terms such asm1 /mi ( i>2), it can
be shown that

Q1
~0!54kn1~Th2Te!S 8kTe

pm1
D 1/2

(
j 52

N

nj

m1

mj
Q̄1 j

~1,1! ,

~2.20!

Q̄1 j
(1,1) being a collision integral defined in@37#. WW i

oWW i is
defined in Appendix A.

However, Eqs.~2.17! and ~2.18! are modified as follows
to take into account the coupling between electrons
heavy species.

It is assumed that the thermal nonequilibrium defined
the ratio u5Te /Th depends on space vectorrW, that is, u
5u(rW).

Hence,

¹W ln Te5¹W ln Th1¹W ln u. ~2.21!

Moreover, the total pressurep is written as

p5n1kTe1(
i 52

N

nikTh ~2.22!

or

kTh5
p

n@11x1~u21!#
~2.23!
02640
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with

n5(
i 51

N

ni . ~2.24!

xi is the molar fraction of the speciesi. The molar fractions
obviously check

(
i 51

N

xi51. ~2.25!

So, the partial pressure of electronsp1 is written as

p15n1kuTh5
x1up

11x1~u21!
. ~2.26!

Thus, it can be shown that

¹W p15
up

D2 ¹W x11
x1u

D
¹W p1

x1p~12x1!

D2 ¹W u, ~2.27!

where

D511x1~u21!. ~2.28!

The partial pressurepi ( i>2) of thei th heavy species is als
written as

pi5nikTh5
xip

11x1~u21!
, ~2.29!

therefore

¹W pi5
p

D
¹W xi2

xip~u21!

D2 ¹W x11
xi

D
¹W p2

xix1p

D2 ¹W u.

~2.30!

Using Eq.~2.21! and substituting Eqs.~2.27! and ~2.30!, re-
spectively, into Eqs.~2.17! and ~2.18!, we get the following
using I i

(0) . For electrons,

D f 1
~0!

Dt
2I 1

~0!5 f 1
~0!F ~W1

22 5
2 !~VW 1•¹W ln Th!12WW 1

oWW 1 :¹W vW 0

1
VW 1

n1kTe
•dW 11

g1

n1kTh
VW 1•¹W ln u

1~W1
22 5

2 !VW 1•¹W ln uG
1Q1

~0!F f 1
~0!

n1kTe
~ 2

3 W1
221!2

I 1
~0!

Q1
~0!G , ~2.31!

where

dW 15
r1

r (
j 51

N

njFW j2n1FW 11S x1u

D
2

r1

r D¹W p1
up

D2 ¹W x1

~2.32!

and
9-5
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g15
x1p~12x1!

D2 . ~2.33!

For heavy species (i>2),

D f i
~0!

Dt
2I i

~0!5 f i
~0!F ~Wi

22 5
2 !~VW i•¹W ln Th!12WW i

oWW i :¹W vW 0

1
VW i

nikTh
•dW i1

ugi

nikTh
VW i•¹W ln uG1Q1

~0!

3F f i
~0!

~n2n1!kTh
~12 2

3 Wi
2!2

I i
~0!

Q1
~0!G , ~2.34!

where

dW i5
r i

r (
j 51

N

njFW j2niFW i1S xi

D
2

r i

r D¹W p1
p

D
¹W xi

2
xi~u21!p

D2 ¹W x1 ~2.35!

and

gi52
xix1p

D2 . ~2.36!

With these definitions, it is checked that

(
i 51

N

dW i50W ~2.37!

and

(
i 51

N

gi50. ~2.38!

The transport terms, Eqs.~2.31! and~2.34!, show that trans-
port phenomena are due to a new gradient¹ ln u, which char-
02640
acterizes the temperature difference between electrons
heavy species, the heavy species temperature gradient
velocity gradient, external forces~forced diffusion!, the con-
centration and pressure gradients, and a term acting on
hydrostatic pressure to the first-order approximation of S
nine polynomials. The introduction of¹ ln u allows the ex-
change of transport properties~mass, momentum, and en
ergy! between the subsystems consisting of electrons
heavy species, which are not isolated from each other.

From a calculation point of view, the introduction o
¹ ln u, allows us to consider the coupling between electro
and heavy species in the resolution of systems of linear eq
tions, which give the transport coefficients.

2. Presumed form of the first-order perturbation function

According to relationships~2.31! and ~2.34!, a general
form of F i(; i ) in Eq. ~2.12! can be presumed such that

F i52AW i•¹W ln Th2BJ i :¹W vW 01(
j 51

N

CW i
j
•dW j1DiQ1

~0!

1(
j 51

N

EW i
j
•gj¹W ln u2FW i•¹W ln u. ~2.39!

The previous unknownsF i are replaced by the new one
AW i , BJ i , CW i

j , Di , EW i
j , andFW i . It has to be noted thatAW i , CW i

j ,

EW i
j , andFW i are vectors,BJ i are second-order tensors, andDi

are scalars.
Substituting Eq.~2.39! into Eq. ~2.12! and identifying the

terms in factors of¹W ln Th , ¹W vW 0 , dW j , Q1
(0) , gj¹

W ln u, and
¹W ln u in the left- and right-hand side due to Eqs.~2.31! and
~2.34!, a general formulation can be defined as follows:

Ri
~h,k!5(

j 51

N E E E f i
~0! f j

~0!
„~Ti8

~h,k!1Tj8
~h,k!!Ki~Wi ,u i j !

2Ti
~h,k!2Tj

~h,k!
…gb db d« dvW j , ~2.40!
TABLE I. Definition of R1
(h,k), Ri

(h,k), andTi
(h,k).

R1
~h,k! Ri

~h,k!

~i>2!

Ti
~h,k!

f1
~0!~

5
22W1

2!VW 1 fi
~0!~

5
22Wi

2!VW i AW i

22 f1
~0!WW 1

oWW 1 22 f i
~0!WW i

oWW i BJ i

f 1
~0!

~d1h2d1k!VW 1

n1kTe
f i

~0!
~d ih2d ik!VW i

nikTh

CW i
hk

f 1
~0!

n1kTe
~

2
3 W1

221!2
I 1

~0!

Q1
~0! 2

f i
~0!

~n2n1!kTh
~

2
3 Wi

221!2
I i

~0!

Q1
~0!

Di

f 1
~0!

~d1h2d1k!VW 1

n1kTh
f i

~0!
u~d ih2d ik!VW i

nikTh

EW i
hk

f 1
~0!~

5
2 2W1

2!VW 1
0 FW i
9-6
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whereTi
(h,k) is a tensor, a vector, or a scalar. Table I gives

correspondence between Eqs.~2.40! and~2.12! after the pre-
vious substitutions. The unknownCW i

h and EW i
h have been re-

placed, respectively, as shown in@5#, by CW i
h2CW i

k or CW i
hk and

EW i
hk taking into account Eqs.~2.37! and~2.38!. The indexesh

andk vary from 1 toN.
d i j are Kronecker symbols defined such asd i j 51 if i

5 j , andd i j 50 otherwise.

3. Auxiliary conditions

It is assumed that the unknownsTi
(h,k) are expressed a

linear combination of Sonine polynomialsSn
p(Wi

2) defined in
@6# ~j is the order of the expansion!:

Ti
~h,k!5Wi

% (
p50

j21

t ip
~h,k!Sn

p~Wi
2!, ~2.41!

whereWi
% ,t ip

(h,k) , andn are defined in Table II.
Auxiliary conditions have to be taken into account@6#:

E f i
~0!F idvW i50, ~2.42!

(
i 51

N

miE vW i f i
~0!F idvW i50, ~2.43!

TABLE II. Definition of n, Wi , andt ip
(h,k) . UJ is the second-orde

unity tensor.

Ti
(h,k) n Wi

% t ip
(h,k)

AW i
3
2 WW i

aip

BJ i
5
2 WW i

oWW i5WW iWW i2
1
3 Wi

2UJ bip

CW i
hk 3

2 WW i
cip

hk

Di
1
2 1 dip

EW i
hk 3

2 WW i
eip

hk

FW i
3
2 WW i

f ip
02640
e

1
2 (

i 51

N

miE ~vW i2vW 0!2f i
~0!F idvW i50. ~2.44!

As a result, several constraints on the different unknowns
introduced according to Eq.~2.39!:

(
j 51

N

nj~mjTj !
1/2t j 0

~h,k!50, ~2.45!

where t j 0
(h,k) is equal toaj 0 , cj 0

hk , ej 0
hk , and f j 0 . This con-

straint~2.45! takes into account the fact that the sum of ma
fluxes has to vanish in the mixture. Moreover, we also ge

di050, ; i , ~2.46!

(
j 51

N

njTjdj 150. ~2.47!

4. Introduction of systems of linear equations

Multiplying Eq. ~2.40! by Wi
% Sn

m(Wi
2), integrating over

vW i , and definingRim
(h,k) as

Rim
~h,k!5E ~Ri

~h,k!:Wi
% !Sn

m~Wi
2!dvW i , ~2.48!

sets of linear equations for each unknown are introdu
taking into account the previous constraints:

(
j 51

N

(
p50

j21

qi j
mpt jp

~h,k!52r im
~h,k! , ~2.49!

where

r im
~h,k!5S 2pmi

kTi
D 1/2

Rim
~h,k! , ~2.50!

qi j
mp5S 2pmi

kTi
D 1/2

Q̃i j
mp , ~2.51!

and
hey are
Q̃i j
mp55

Qi j
mp2

nj~mjTj !
1/2

ni~miTi !
1/2 Qii

mpdm0dp0 if t jp
hk5ajp , cjp

hk , ejp
hk , or f jp

Qi j
mp if t jp

hk5bjp

Qi j
mp2

njTj

niTi
Qii

mpdm0dp1 if t jp
hk5djp

with

Qi j
mp5 (

l 51

N

ninl $d i j @WiSn
m~Wi

2!;WiSn
p~Wi

2!# i l 1d j l @WiSn
m~Wi

2!;Wl Sn
p~Wl

2 !# i l %. ~2.52!

Qi j
mp are expressed as functions of bracket integrals that are generalized out of thermal equilibrium as follows. T

introduced with notations similar to those of Chapmanet al. @6#,
9-7
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@WiSn
m~Wi

2!;WiSn
p~Wi

2!# i j 5
1

ninj
E E E E f i

~0! f j
~0!
„WiSn

p~Wi
2!2Wi8Sn

p~Wi8
2!Ki~Wi ,u i j !…:WiSn

m~Wi
2!gb db d« dvW idvW j ,

~2.53!

@WiSn
m~Wi

2!;WjSn
p~Wj

2!# i j 5
1

ninj
E E E E f i

~0! f j
~0!
„WjSn

p~Wj
2!2Wj8Sn

p~Wj8
2!Ki~Wi ,u i j !…:WiSn

m~Wi
2!gb db d« dvW idvW j .

~2.54!

For a collision between two particles belonging to the same species,i 5 j , Ti5Tj , andKi51, the definition is the same a
that of Chapmanet al. @6#,

@WiSn
m~Wi

2!;WiSn
p~Wi

2!# i5
1

ni
2 E E E E f i

~0! f ~0!
„WiSn

p~Wi
2!1WSn

p~W2!2Wi8% Sn
p~Wi8

2!

2W8% Sm
p ~W82!…:WiSn

m~Wi
2!gb db d« dvW idvW . ~2.55!

TABLE III. Calculation results ofr 1m
(h,k) and r im

(h,k) .

t ip r 1m
(h,k) r im

(h,k) ( i>2)

aip
15
2 p1/2n1d1m

15
2 p1/2nid1m

bip
25n1S2pm1

kTe
D1/2

d0m 25ni S 2pmi

kTh
D 1/2

d0m

cip
hk

3p1/2
~d1h2d1k!d0m

kTe
3p1/2

~d ih2d ik!d0m

kTh

dip
2

~2pm1!
1/2d1m

~kTe!
3/2 2

J1m
~0!

Q1
~0! S 2pm1

kTe
D 1/2 ~2pmi !

1/2nid1m

~n2n1!~kTh!3/22
Jim

~0!

Q1
~0! S 2pmi

kTh
D 1/2

eip
hk

3p1/2
~d1h2d1k!d0m

kTh
3p1/2

u~d ih2d ik!d0m

kTh

f ip
15
2 p1/2n1d1m 0
nc
b

o

w

ar
ba
tio

w
It has to be noted that the symmetry by changing fu
tions in the bracket integral expressions is not conserved
cause of the presence of the termKi(Wi ,u i j ) when two spe-
cies with different temperatures collide, that is, for tw
functionsFi andH j ,

@Fi ;H j # i j Þ@H j ;Fi # i j . ~2.56!

The values ofr im
(h,k) are given in Table III.

Jim
(0) is defined as

Jim
~0!5E I i

~0!S1/2
m ~Wi

2!dvW i . ~2.57!

Jim
(0) can be easily calculated following the expansions sho

in Appendix B; its result is given therein.

III. TRANSPORT COEFFICIENTS

The diffusion velocity, heat flux, and pressure tensor
introduced in the usual form due to the first-order pertur
tion function but taking into account the temperature ra
02640
-
e-

n

e
-

gradient. This new contribution will allow us to define ne
transport coefficients.

A. Diffusion coefficients in a multitemperature plasma

The diffusion velocity is given by

VW̄ i5
1

ni
E VW i f idVW i . ~3.1!

Insertingf i5 f i
(0)(11F i) due to Eq.~2.39! into Eq.~3.1!, we

get

VW̄ i5
n

nirkTi
(
j 51

N

mj~Di j dW j1Di j
u gj¹W ln u!2

Di
T

nimi
¹W ln Th

2
Di

u*

nimi
¹W ln u, ~3.2!

where
9-8
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Di j 5
nirkTi

nmj
S kTi

2mi
D 1/2

ci0
j i , ~3.3!

Di j
u 5

nirkTi

nmj
S kTi

2mi
D 1/2

ei0
j i , ~3.4!

Di
T5nimi S kTi

2mi
D 1/2

ai0 , ~3.5!

and

Di
u* 5nimi S kTi

2mi
D 1/2

f i0 ~3.6!

with, of course,Ti5Te if i 51 andTi5Th if i>2. The dif-
ferent unknowns are determined by solving sets of lin
equations defined in the preceding section.

The coefficientsDi j are the two-temperature ordinary di
fusion coefficients, which the simplified theory of Devo
does not provide, andDi

T are the two-temperature therm
diffusion coefficients. New thermal nonequilibrium diffusio

coefficientsDi j
u andDi

u* are introduced taking into accoun
the temperature difference between electrons and heavy
cies and corresponding to diffusion due to the gradient of
temperature ratiou5Te /Th . It has to be noted that the dif
fusion velocity of electrons depends on the heavy spe
gradient. In fact,Th can be considered as a reference te
perature, the temperature differenceTe and Th being com-

pleted by the introduction ofDi
u* ~see Table I!. The diffusion

coefficientDi j
u traduces a mass transfer in the mixture, wh

tends to eliminate the temperature difference between e
trons and heavy species. Moreover, Eq.~3.2! can be ex-
pressed as a function of¹W ln Te using the relation~2.21!.

B. Translational thermal conductivity in a multitemperature
plasma

The heat flux is given by

qW 5 1
2 (

j 51

N

mjE Vj
2VW j f jdVW j . ~3.7!

Inserting the form off i , that is, f i5 f i
(0)(11F i) due to Eq.

~2.39!, into Eq. ~3.7!, the heat flux is then given by

qW 5(
i 51

N H 5
2 kTiniVW̄ i2k i8¹W Th2k i8

uTi¹W ln u2(
j 51

N k i j
D

njmj
dW j J ,

~3.8!

where

k i852 5
4 k

Ti

Th
ni S 2kTi

mi
D 1/2

ai1 , ~3.9!

k i8
u52 5

4 kni S 2kTi

mi
D 1/2S f i12(

j 51

N

ei1
j i gj D , ~3.10!
02640
r

pe-
e

s
-

c-

k j i
D5 5

4 ninjmjkTi S 2kTi

mi
D 1/2

ci1
j i ~3.11!

with Ti5Te if i 51 andTi5Th if i>2. k i8 is the translational
thermal conductivity of thei th species.

An alternate contribution due to the thermal nonequil
rium appears in Eq.~3.7! and its corresponding thermal con
ductivity k i

u as shown in the derivation of diffusion velocity
The calculation is quite different from that performed
equilibrium because of the asymmetry of calculations int
duced by the presence of different temperatures. It has t
noted that, in the expression of thermal conductivity of ele
tronsk18 , the termu5Te /Th takes into account the fact tha
their heat flux is calculated with respect to the temperat
gradient of heavy species¹W Th .

The true translational thermal conductivity can also
defined by introducing the specific enthalpyhi of the i th
species@53# such thatr ihi5

5
2 nikTi . It is shown that the hea

flux can be written as

qW 5(
i 51

N S hi2
rk

n (
j 51

N
L jEji Ti

njmjmi
D r iVW̄ i

2(
i 51

N

~k i¹W Th1k j
uTi¹W ln u!, ~3.12!

where

L i5(
j 51

N

k j i
D , ~3.13!

k i5k i81
rk

n (
j ,k51

N k i j
DTkEjk

mknjmjTh
Dk

T , ~3.14!

k i
u5k i8

u1
rk

n (
j ,k51

N k i j
DEjknkTk

njmjTi
Dk

u , ~3.15!

and

Di
u5

Di
u*

nimi
2

n

nirkTi
(
j 51

N

mjDi j
u gj ~3.16!

with Ti5Te if i 51 andTi5Th if i>2.
Ei j is the element of the inverse of the matrix where t

general element isD ji mi as defined in@53#. k i and k i
u are,

respectively, the true translational conductivity due to t
temperature gradient of heavy species and thermal none
librium between electrons and heavy species. The ther
conductivity due to the nonequilibrium thermalk i

u highlights
the energy transfer between the two subsystems consistin
electrons and heavy species, which are not independent
more. This energy transfer tends to remove the tempera
difference between both species in the mixture.
9-9
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C. Viscosity coefficient in a multitemperature plasma

The pressure tensorpJ is given by

pJ5(
i 51

N

miE VW iVW i f idVW i . ~3.17!

Inserting f i5 f i
(0)(11F i) due to Eq.~2.39! into Eq. ~3.17!,

the tensor of pressure is given by

pJ5(
i 51

N

@nikTi~12di1Q1
~0!!UJ22m i SJ#. ~3.18!

The viscosity coefficientm i associated to thei th species is

m i5
1
2 nikTibi0 ~3.19!

with Ti5Te if i 51 andTi5Th if i>2.
The tensorSJ has the components

Si j 5
1

2S dy0i

dxj
1

dy0 j

dxi
D2

1

3
d i j ¹

W
•yWo.

It has to be noted that the hydrostatic pressurep
5S i 51

N nikTi defined at the zero-order approximation of t
distribution function is perturbed bydil obtained from the
second-order approximation of Sonine polynomials.

IV. CALCULATION OF BRACKET INTEGRALS IN A
MULTITEMPERATURE PLASMA

This section is devoted to the calculation of brack
integrals such as @Wi

% Sn
q(Wi

2);Wj
% Sn

p(Wj
2)# i j and
02640
t

@Wj
% Sn

q(Wi
2);W% iSn

p(Wi
2)# i j defined in Sec. II B 4, whereW

andn are, respectively and successively,WW and 3
2, WW oWW and

5
2. The calculation of the bracket integral in whichW andn
are, respectively, 1 and12 is not presented because it is n
directly used in the calculation of transport coefficients.
derivation can be easily obtained following Appendix
Only the results are presented below, whereas Appendi
gives more details about the derivation

@WW iS3/2
q (Wi

2);WW jS3/2
p (Wj

2)# i j . In Sec. VI A, comments are
given about computed results for an electron–heavy-spe
collision.

Moreover, the expressions of bracket integrals cor
sponding to the collision electrons-electrons or hea
species–heavy species are the same as at thermal eq
rium, but with the correct corresponding temperatures.

A. Calculation of the bracket integral
†W¢ iS3Õ2

q
„Wi

2
…;W¢ jS3Õ2

p
„Wj

2
…‡ i j

Following notations given in Appendix B, where reduce
masses are defined as

Mi15
miTj

miTj1mjTi
, ~4.1!

Mi25
mjTj

miTi1mjTj
, ~4.2!

it is shown in Appendix B that
@WW iS3/2
q ~Wi

2!;WW jS3/2
p ~Wj

2!# i j 58
~mi1mj !

3

~mimj !
3/2 u i j

3/2@11Mi1~u i j
2 21!#1/2Mi1

p12Mi2
q12 (

qpr8l 8
Aqpr8l 8V i j

~ l 8,r 8! , ~4.3!

whereV i j
( l 8,r 8) is the collision integral taking into account the interaction potential between the speciesi andj. Their definition

is given in Sec. V.Aqpr8p8 are numbers depending onmi , mj , and u i j 5Ti /Tj . They are obtained from the following
expression:

(
qpr8l 8

Aqpr8l 8g
2r 8 cosl 8x5( g2r~r 1 3

2 1g2$Bi j 2Ai j cosx%!~21! j 1 i@2~12cosx!#k2 j

3~2 cosx1u i j 21! i~u i j 21!2r 1l 22k2m2 i~u i j 11! l 2mMi1
r 1l 2k2mMi2

r 2k2 i

3
~r 1 3

2 1l ! l ~ j 1m!!

j ! ~k2 j !! i ! ~r 2k2 i !!m! ~ l −m!! ~ j 1m2n!!n!
, ~4.4!
9-10
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where

h i j 5
mi

mj
,

a i j 5
miTj1mjTi

miTi1mjTj
,

Ai j 5Mi2~12u i j !1a i j ,

Bi j 5Mi2h i j ~12u i j !.

The term rq denotes the product of theq factors r ,
r 21,...,r 2q11. The sum of the left-hand side of expre
sion ~4.4! is independent of that of the right-hand side. T
sums have to be developed in accordance with the sum
tion conditions given below.

First, for fixed values ofq andp, the double sum on the
left-hand side of Eq.~4.4! is developed overr 8 andl 8. This
expansion will be the same in expression~4.3!. Then, the
multiple sum of the right-hand side of expression~4.4! is
developed overr, k, j, i, l , andm. Lastly, the coefficients in
front of the productsg2a cosb x on the right-hand side ar
identified with theAqpab numbers on the left-hand side o
Eq. ~4.4! and are introduced into Eq.~4.3!.

The summation conditions are the following. For t
left-hand side of Eq.~4.4!,
ft

02640
a-

0<r 8<p1q11,

0<l 8<q11.

For the right-hand side of Eq.~4.4!,

0< j <k<r<p1q,

0< i<r 2k,

l 5p1q1 j 22k2 i ,

0<m<l ,

0<k1 i 1l 2q< j 1m,

n5k1 i 1l 2q.

It has to be noticed that whenu i j 51 in the final expansion,
our results lead strictly to those obtained by@5,6#.

B. Calculation of the bracket integral
†W¢ iS3Õ2

q
„Wi

2
…;W¢ iS3Õ2

p
„Wi

2
…‡ i j

Following a calculation similar to the previous one, it ca
be easily shown that
@WW iS3/2
q ~Wi

2!;WW iS3/2
p ~Wi

2!# i j 58
~mi1mj !

3

~mimj !
3/2 u i j

3/2~Mi1Mi2!3/2 (
qpr8l 8

Aqpr8l 8
8 V i j

~ l 8,r 8! , ~4.5!

whereAqpr8l 8
8 is a number depending onmi ,mj , andu i j 5Ti /Tj , which is obtained from the following:

(
qpr8l 8

Aqpr8l 8
8 g2r 8 cosl 8x5( @Mi1~r 1 3

2 !1g2$Ai j ~11cosx!2Mi2%#g2r~u i j 11!n~u i j 21!2r 1 j 2 i 22kM i2
r ~1

2Mi1!mMi1
r 1 j 2k2 i~2Mi121! l 2m~2 cosx1u i j 21! j 2 i 2n@222Mi11Mi1~u i j

2 21!

12Mi1u i j cosx#k2 j
~21! j~r 1 3

2 1l ! l ~m1 i !!

~r 2k!! ~k2 j !! i !n! ~ j 2 i 2n!!m! ~ l 2m!!u! ~m1 i 2u!!
, ~4.6!
where

Ai j 5Mi21Mi1Mi2~u i j 21!.

The summation conditions are the following. For the le
hand side of Eq.~4.6!,

0<r 8<p1q11,

0<l 8<q11.

For the right-hand side of Eq.~4.6!,

0< i< j <k<r<p1q,
-

0<n< j 2 i ,

0<2k12l 2 j 2p2q<l ,

0<k1l 2n2q<2k12l 1 i 2 j 2p2q,

u5k1l 2n2q,

m52k12l 2 j 2p2q.

C. Calculation of the bracket integral
†W¢ i

oW¢ iS5Õ2
q
„Wi

2
…;W¢ j

oW¢ jS5Õ2
p
„Wj

2
…‡ i j

It can be shown that
9-11
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@WW i
oWW iS5/2

q ~Wi
2!;WW j

oWW jS5/2
p ~Wj

2!# i j 5
16

3

~mi1mj !
3

~mimj !
3/2 u i j

3/2Mi1
p1~5/2!Mi2

q1~5/2!

3@11Mi1~u i j
2 21!# (

qpr8l 8
Bqpr8l 8V i j

~ l 8,r 8! . ~4.7!

CoefficientsBqpr8l 8 are obtained due to

(
qpr8l 8

Bqpr8l 8g
2r 8 cosl 8 x5( g2rF ~r 1 3

2 !~r 1 5
2 !1~2r 15!g2~Bi j 2Ai j cosx!1g4

3S ~Bi j 2Ai j cosx!22
Ai j

2

2
~12cos2 x! D G~21! j 1 i@2~12cosx!#k2 j~2 cosx1u i j 21! i

3~u i j 21!2r 1l 22k2m2 i~u i j 11! l 2mMi1
r 1l 2k2mMi2

r 2k2 j

3
~r 1 5

2 1l ! l ~ j 1m!!

j ! ~k2 j !! i ! ~r 2k2 i !!m! ~ l 2m!! ~ j 1m2n!!n!
, ~4.8!
ft
where

h i j 5
mi

mj
, a i j 5

miTj1mjTi

miTi1mjTj
,

Ai j 5Mi2~12u i j !1a i j ,

Bi j 5Mi2h i j ~12u i j !.

The summation conditions are the following. For the le
hand side of Eq.~4.8!,

0<r 8<p1q12,

0<l 8<q12.

For the right-hand side of Eq.~4.8!,

0< j <k<r<p1q,

0< i<r 2k,
where

02640
-

l 5p1q1 j 22k2 i ,

0<m<l ,

0<k1 i 1l 2q< j 1m,

n5k1 i 1l 2q.

D. Calculation of the bracket integral
†W¢ i

oW¢ iS5Õ2
q
„Wi

2
…;W¢ i

oW¢ iS5Õ2
p
„Wi

2
…‡ i j

It can be shown that

@WW i
oWW iS5/2

q ~Wi
2!;WW j

oWW jS5/2
p ~Wj

2# i j

~4.9!

5
16

3

~mi1mj !
3

~mimj !
3/2 u i j

3/2~Mi1Mi2!3/2 (
qpr8l 8

Bqpr8l 8
8 V i j

~ l 8,r 8! .

CoefficientsBpqr8l 8
8 are obtained from
(
qpr8l 8

Bqpr8l 8
8 g2r 8 cosl 8 x5( H F ~r 1 3

2 !~r 1 5
2 !Mi1

2 1~2r 15!g2Mi1@Ai j ~11cosx!2Mi2#1g4S @Ai j ~11cosx!2Mi2#2

2
Ai j

2

2
~12cos2 x! D Gg2r~u i j 11!n~u i j 21!2r 1 j 2 i 22kM i2

r ~12Mi1!mMi1
r 1 j 2k2 i~2Mi121! l 2m

3~2 cosx1u i j 21! j 2 i 2n@222Mi11Mi1~u i j
2 21!12Mi1u i j cosx#k2 j

3
~21! j~r 1 5

2 1l ! l ~m1 i !!

~r 2k!! ~k2 j !! i !n! ~ j 2 i 2n!!m! ~ l 2m!!u! ~m1 i 2u!!
J , ~4.10!
9-12
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Ai j 5Mi21Mi1Mi2~u i j 21!.

The summation conditions are the following. For the le
hand side of Eq.~4.10!,

0<r 8<p1q12,

0<l 8<q12.

For the right-hand side of Eq.~4.10!,

0< i< j <k<r<p1q,

0<n< j 2 i ,

0<2k12l 2 j 2p2q<l ,

0<k1l 2n2q<2k12l 1 i 2 j 2p2q,

u5k1l 2n2q,

m52k12l 2 j 2p2q.

V. COLLISION INTEGRAL

The definition of the collision integral is the same as th
given by Chapman and Cowling@5#,

f i j
~ l 8!5E

0

`

~12cosl 8 x!gb db, ~5.1!

V i j
~ l 8,r 8!5p1/2E

0

`

e2g2
g2~r 811!f i j

~ l 8!dg, ~5.2!

x being the deflection angle.

f i j
(l 8) and V i j

(l 8,r 8) are, respectively, the transport cro
section and the collision integral. It has to be noted t
during a collision between two particles with different tem

TABLE IV. Calculation ofA00r l 8 for different values ofu with
a mass ratiomj /mi51025.

u 1.00 1.25 1.50 2.00 3.00

A0011 21.00 21.25 21.50 22.00 23.00

TABLE V. Calculation ofA01r l 8 andA10r l 8 for different values
of u with a mass ratiomj /mi51025.

u 1.00 1.25 1.50 2.00 3.00

A0111 22.50 23.12 23.75 25.00 27.50
A1011 22.50 21.00 0.00 1.25 2.50
A0121 1.00 1.25 1.50 2.00 3.00
A1021 1.00 1.40 2.00 3.50 7.00
A0122 0.00 0.00 0.00 0.00 0.00
A1022 0.00 20.50 21.00 22.00 24.00
02640
-

t

t

peratures, the variable changes~B5! and ~B6! given in Ap-
pendix B imply the introduction of an effective temperatu
of collision Ti j* such that

Ti j* 5F 1

mi1mj
S mi

Tj
1

mj

Ti
D G21

. ~5.3!

However, Hirschfelder has defined a transport cross sec

Qi j
(l 8) such that

Qi j
~ l 8!5

2p

g
f i j

~ l 8! , ~5.4!

that is,

Qi j
~ l 8!52pE

0

1`

~12cosl 8 x!b db. ~5.5!

Expressing Eq.~5.2! with the variableg ~defined in Appen-
dix B!, g25m i j g

2/2kTi j* ,

V i j
~ l 9,r 8!5S kTi j*

2pm i j
D 1/2E

0

1`

e2g2
g2r 813Qi j

~ l 9!dg, ~5.6!

m i j 5mimj /(mi1mj ) being a reduced mass.

VI. APPLICATION TO A TWO-TEMPERATURE ARGON
PLASMA

In this section, an application is presented for a tw
temperature argon plasma. First, computed results of bra
integrals show clearly the discrepancies with respect to
equilibrium. Transport coefficients are then calculated
ionized argon plasma out of thermal equilibrium.

A. Comments on the results of bracket integrals in a two-
temperature plasma

Some computed results of the calculation of expressi
~4.4! and ~4.8! are presented below for different values
~q,p! for a mass ratiomj /mi51025, which corresponds to an
electron–heavy-species collision. The behavior ofAqpr8l 8
andBqpr8l 8 is given in Tables IV–VIII as a function of ther
mal nonequilibriumu. It is to be noted that, in this case,mj
is the mass of an electron. Consequently,u i j is calculated
such thatu i j 51/u. The thermal nonequilibrium has bee
chosen to vary from 1 to 3 because experimental studies~for
example dealing with a free-burning arc@23# or an induc-
tively coupled plasma torch@26#!, close to the atmospheri
pressure, have shown thatu does not exceed 3. First, it i

TABLE VI. Calculation ofA11r l 8 for different values ofu with
a mass ratiomj /mi51025.

u 1.00 1.25 1.50 2.00 3.00

A1111 213.75 28.50 25.00 20.63 23.75
A1121 5.00 3.30 3.00 4.50 11.00
A1122 2.00 0.75 20.50 23.00 28.00
A1131 21.00 21.40 22.00 23.50 27.00
A1132 0.00 0.50 1.00 2.00 4.00
9-13
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observed that our results strictly lead to those presente
@5# at thermal equilibrium (u51) in each calculation~see
Tables IV–VII!.

Moreover, Table V shows that a asymmetry inA01r 8l 8 and
A10r 8l 8 arises when calculating foruÞ1 as predicted in Sec
II B 4.

Tables V, VI, VII, and VIII show, respectively, the intro
duction of new coefficientsA0122 and A1022, A1132, B1021,
andB1031 andB1033, which are not present at thermal equ
librium. As a result, the corresponding collision integra

V i j
(l 8,r 8) will have to be taken into account in the calculatio

of transport coefficients out of thermal equilibrium. Thus,
is shown that the previous linear combinations are sign
cantly modified in comparison with equilibrium.

Besides, it has to be underlined that the results prese
in these tables are different if bracket integrals are calcula
with a mass ratiomi /mj51025, except at thermal equilib
rium, because of the asymmetry previously dealt with. In t
case, it is observed that coefficients of linear combinati
do not significantly vary. Indeed, when an electron and
heavy species collide, the latter is much less affected
collision than the electron. Thus, whenmi /mj51025, mj
represents the mass of a heavy species. As a result,
expected that, according to the definition of bracket integ
@expression~2.54!#, the results of the calculation of the latte
are slightly modified regardless of the applied thermal n
equilibrium u.

Similar behaviors ofAqprl 8
8 andBqprl 8

8 , computed from
expressions~4.6! and~4.10!, are observed when varyingu. In
this case, these coefficients depend on the mass ratiomi /mj
at thermal equilibrium.

B. Two-temperature transport coefficients in an argon plasma

An application of transport coefficients derived in the p
vious sections is presented for a two-temperature ar
plasma. Calculations are performed at atmospheric pres

TABLE VII. Calculation ofB00r l 8 for different values ofu with
a mass ratiomj /mi51025.

u 1.00 1.25 1.50 2.00 3.00

B0011 25.00 26.25 27.50 210.00 215.00
B0021 0.00 0.63 21.50 24.00 212.00
B0022 1.50 2.34 3.37 6.00 13.49

TABLE VIII. Calculation of B10r l 8 for different values ofu with
a mass ratiomj /mi51025.

u 1.00 1.25 1.50 2.00 3.00

B1011 217.50 210.50 25.83 0.00 5.83
B1021 7.00 8.41 11.66 21.00 44.32
B1022 5.25 1.75 21.75 28.75 222.74
B1031 0.00 0.36 1.08 4.00 16.65
B1032 21.50 22.69 24.75 211.50 235.58
B1033 0.00 0.94 2.25 6.00 18.00
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and the two-temperature plasma composition is obtained
ing the Saha equation for ionization of Van de Sandenet al.
@45#. Electron Ar and Ar1 species have been consid
ered. Transport coefficients are calculated in the fourth
proximation (j54) for different values ofu.

Table IX presents a comparison of the electron therm
conductivity calculated from the expression~3.14! and from
expressions given in@37# for different values of the nonequi
librium parameteru and forTe520 000 K. The total therma
conductivity is not displayed because the contribution
electrons is more prevalent when calculating the therm
conductivity at that temperature. It has to be noted that
electron thermal conductivityke has been calculated with
respect to the electron temperature gradient to be comp
to that of Devoto, so that expression~3.14! has to divided by
u.

First, the presented theory gives the same results as o
authors@1,7# at thermal equilibrium~whenu51.00!. More-
over, it has been checked that, at thermal equilibrium,
results obtained from@37# are the same as those of the com
plete calculation, which confirms that the simplified theo
of the transport coefficient is valid at thermal equilibrium.

However, the simplified theory of Devoto, modified b
Bonnefoi, underestimates the electron thermal conducti
when nonequilibrium conditions are applied. The discre
ancy reaches more than 40% foru53.00 ~see Table IX!. It
can be observed that the electron thermal conductivity
Devoto decreases withu. It has been checked that, whe
calculatingke with u51.00 but with a nonequilibrium com
position,ke increases with respect to the equilibrium valu

Table X shows two-temperature ordinary diffusion coef
cients calculated atTe56000 K for different values ofu.
This temperature has been chosen because ionization
longer negligible and the ionization of argon atoms is n
completed, which allows us to observe the behavior of d
fusion coefficients implying electron Ar and Ar1 species.

First, the obtained equilibrium values (u51.00) forDe-Ar
are in good agreement with the admitted values since it
been checked that the value of electrical conductivity, wh
is a function ofDe-Ar andDe-Ar1 with De-Ar'De-Ar1 , is that
obtained at thermal equilibrium@53#.

TABLE IX. Electron thermal conductivity for different values o
u calculated atTe520 000 K.

u 1.00 1.30 2.00 3.00

ke(W m21 K21) 2.58 2.71 2.95 3.20
ke

Devoto(W m21 K21) 2.58 2.38 2.00 1.85
@34,37#

TABLE X. Ordinary diffusion coefficients for different value
of u calculated atTe56000 K.

u 1.00 1.30 2.00 3.00

De-Ar (m2 s21) 7.73 5.92 3.84 2.55
DAr-Ar1 (1024 m2 s21) 2.58 2.38 2.00 1.85
9-14
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It is observed that two-temperature diffusion coefficie
decrease withu. The diffusion coefficientDAr-Ar1 being a
function of u only through the composition, the latter co
tributes to decrease the diffusion coefficients. The same
servation can be made forDe-Ar , but the influenceu through
the bracket integrals emphasizes this tendency. A more
tailed analysis of transport coefficients over a wide range
temperature will be performed in a future paper.

The consistent calculation of the electron thermal cond
tivity ke shows that the calculation of thermal diffusionDi

T

as well as that of ordinary diffusion coefficientsDi j , through
the inverse matrix elementEji , are consistent@see relation
~3.14!#. Is has been checked that the two-temperature di
sion coefficients satisfy symmetry conditions through E
~2.45!. This calculation also shows that, contrary to a co
monly accepted idea, the transport coefficients have to
computed keeping the coupling between electrons and he
species in nonequilibrium conditions, which is not the ca
of the commonly used approach of Devoto@34,35#.

VII. CONCLUSION

An alternate derivation of transport properties in a tw
temperature plasma has been performed. Recent works
shown that the simplified theory of transport properties
of thermal equilibrium introduced by Devoto and then mo
fied by Bonnefoi and neglecting the coupling between el
trons and heavy species leads to unphysical results. T
two-temperature transport coefficients have been der
starting from Boltzmann’s equation. The latter is solved
using the well-known Chapman-Enskog method, which
been adapted to thermal nonequilibrium plasmas. It has b
assumed that the distribution function of species, the solu
of Boltzmann’s equation, is a Maxwellian, atTe for electrons
and Th for heavy species, perturbed by a slowly time- a
space-dependent first-order perturbation function.

The zero-order approximation of the subdivision of Bo
zmann’s equation using the Chapman-Enskog method d
not vanish for two colliding species with different temper
tures, that is, for electrons and heavy species. Conseque
the corresponding expression has been included in the ca
lation of the first-order perturbation function. The latter h
been shown to be a function of the temperature gradien
heavy species~or of electrons!, which can be considered as
reference temperature gradient, and a gradient of tempera
ratio u5Te /Th . The introduction of the gradient¹W u allows
us to define separate systems of linear equations for the
culation of transport coefficients and to maintain the co
pling between electrons and heavy species in the resolu
of these systems, which was not the case in the simpli
theory of Devoto. To solve them, the calculation of brac
integrals, introduced by Chapman and Cowling, has b
generalized out of thermal equilibrium. These bracket in
grals are significantly modified in comparison with those
thermal equilibrium. This is due, on the one hand, to
coefficients of these linear combinations, which are th
drastically changed following the applied thermal noneq
librium, and, on the other hand, to the introduction of co
sion integrals with indexes (r 8,l 8) higher than those at ther
02640
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mal equilibrium. Moreover, the derivation of diffusio
velocity shows that nonequilibrium diffusion coefficien
characterizing the temperature difference in a tw
temperature plasma@¹W u5¹W (Te /Th)# have to be introduced
The translational thermal conductivity is also altered co
pared to previous calculations.

An application is presented for a two-temperature arg
plasma commonly used in experimental devices. Calcula
two-temperature transport coefficients show that the de
oped theory is consistent. First, the model in whichTe5Th
checks equilibrium results given in the literature. Second
the simplified theory of transport coefficients, very ofte
used in modeling, underestimates atTe520 000 K the elec-
tron thermal conductivity up to 40% compared to the ac
rate value for a nonequilibrium parameteru53.00. Lastly, it
is shown that two-temperature diffusion coefficients, satis
ing symmetry rules, can be calculated between electrons
heavy species, contrary to what happens when using the
plified theory of transport coefficients of Devoto, and wh
u51.00 have values currently admitted at equilibrium.

The derivation developed here will allow a physically ri
orous treatment of transport properties in nonequilibriu
plasmas. Particularly, it will allow the combined diffusio
coefficient method of Murphy to be applied to nonequili
rium plasmas and describe demixing in non-LTE regio
such as those observed close to the electrodes in dc arcs
the fringes of an arc column or a plasma jet.

APPENDIX A

Consider two vectorsaW andbW with respective component
(ax ,ay ,az) and (bx ,by ,bz). The product of these vectorsaW bW
is written

aW bW 5S axbx axby axbz

aybx ayby aybz

azbx azby azbz

D .

aW bW is a second-order tensor.
Let WJ be a second-order tensor@6#,

WJ̊ 5WJ 2 1
3 ~wxx1wyy1wzz!UJ , ~A1!

wherewxx , wyy , andwzz are components of tensorWJ .
The double product between two second-order tensorWJ

andWJ 8 is written as

WJ :WJ 85(
ab

wabwab8 , ~A2!

wab andwab8 being, respectively, components ofWJ andWJ 8.

APPENDIX B

This appendix is devoted to the calculation of the brac
integral @WW iS3/2

q (Wi
2);WW jS3/2

p (Wj
2)# i j and that ofJim

(0) . The
9-15
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derivation of the other bracket integrals is similar to the f
lowing.

1. Encounter relationships

An isolated system, consisting in two colliding particlei
and j, is considered. It is assumed, for the sake of genera
that the kinetic temperatures of the speciesi and j are, re-
spectively,Ti andTj .

VW i , VW j , GW 0 , andgW are, respectively, the peculiar veloc
ties of speciesi and j, the velocity of their mass center, an
their relative velocity.

The classical encounter relationships are the following

V̄i5GW 02
mj

mi1mj
gW , ~B1!

VW j5GW 01
mi

mi1mj
gW , ~B2!

wheregW 5vW j2vW i5VW j2VW i .
The reduced velocities of speciesi and j are

WW i5S mi

2kTi
D 1/2

VW i , ~B3!

WW j5S mj

2kTj
D 1/2

VW j . ~B4!

The following variable change introduced by Devoto@34# is
used:

GW 05S mi

2kTi
1

mj

2kTj
D 1/2

GW 0 , ~B5!

gW 5F mimj

~mi1mj !
2 S mi

2kTj
1

mj

2kTi
D G1/2

gW . ~B6!

During a collision between a heavy particle and a light o
the collision mass center is almost that of the heavy parti
GW 0 is therefore mainly a function ofTj if mi!mj . However,
since the velocity of the light particle is much higher th
that of the heavy one in the previous assumption,gW is mainly
a function of Ti . Inserting this variable change into Eq
~B1! and ~B2!, we get

WW i5Mi1
1/2GW 02Mi2

1/2gW , ~B7!

WW j5M j 1
1/2GW 01M j 2

1/2gW , ~B8!

where reduced masses have been defined:
02640
-

y,

,
e.

Mi15
miTj

miTj1mjTi
, ~B9!

Mi25
mjTj

miTi1mjTj
, ~B10!

M j 15
mjTi

miTj1mjTi
, ~B11!

M j 25
miTi

miTi1mjTj
. ~B12!

It has to be noted that ifWW i8 andgW 8 are, respectively,WW i and
gW after collision, it follows that

WW i85Mi1
1/2GW 02Mi2

1/2gW 8 ~B13!

and @6#

g5g8, ~B14!

gW •gW 85g2 cosx. ~B15!

2. Calculation of †W¢ iS3Õ2
q
„Wi

2
…;W¢ jS3Õ2

p
„Wj

2
…‡ i j

This bracket integral calledI i j is defined in Sec. II B 4 by

I i j 5
1

ninj
E E E f i

~0! f j
~0!@WW jS3/2

p ~Wj
2!

2WW j8Ki~Wi ,u i j !S3/2
p ~Wj8

2!#•WW iS3/2
q ~Wi

2!

3gb db d« dvW idvW j . ~B16!

According to the definition of Sonine polynomials@6#, I i j is
the coefficient ofsptq in the expansion ofP i j defined as

P i j 5
1

ninj
~12s!25/2~12t !25/2E E E E f i

~0! f j
~0!~WW je

2SWj
2

2WW j8Kie
2SWj8

2
!•WW ie

2TWi
2
gb db de dvW idvW j , ~B17!

where

S5
s

12s
and T5

t

12t
.

After performing the variable changes~B5! and ~B6! and
inserting the Maxwellian distribution functions defined as

f i
~0!5ni S mi

2pkTi
D 3/2

exp~2Wi
2!, ~B18!

f j
~0!5nj S mj

2pkTj
D 3/2

exp~2Wj
2! ~B19!

into Eq. ~B17!, we get
9-16
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P i j 5~12s!25/2~12t !25/2p23
~mi1mj !

3

~mimj !
3/2 ~Mi1Mi2!3/2u i j

3/2

3E E E E e2Wi
2
2Wj

2
~WW je

2SWj
2

2WW j8e
2SWj8

2
2~12u i j !~Wi8

2
2Wi

2
!!•WW ie

2TWi
2

3gbdb de dGW 0dgW , ~B20!

whereKi has been replaced by its value

Ki~Wi ,u i j !5exp@2~12u i j !~Wi8
22Wi

2!#. ~B21!

As shown in@6#, let Hi j (x) be such that

Hi j ~x!5E exp@2Wi
22Wj

22SWj8
22TWi

2

2~12u i j !~Wi8
22Wi

2!#WW j8•WW idGW 0 . ~B22!

Thus,Hi j (0) is the limit function ofHi j (x) when the species
i and j do not collide:

Hi j ~0!5E exp~2Wi
22Wj

22SWj
22TWi

2!WW j•WW idGW 0 .

~B23!

Equation~B17! can be written as follows:

P i j 5~12s!25/2~12t !25/2p23
~mi1mj !

3

~mimj !
3/2 ~Mi1Mi2!3/2u i j

3/2

3E E E @Hi j ~0!2Hi j ~x!#gb db de dgW . ~B24!

Several relationships useful for the following expansion
defined below:

u i j 5
Ti

Tj
, h i j 5

mi

mj
,

S Mi1Mi2M j 2

M j 1
D 1/2

u i j 5M j 2 , ~B25!

S Mi1Mi2M j 2

M j 1
D 1/2

5Mi2h i j , S Mi2M j 1M j 2

Mi1
D 1/2

5Mi2u i j ,

Mi1Mi2u i j
2 5M j 1M j 2 , ~B26!

M j 25Mi11Mi1Mi2~u i j
2 21!, ~B27!

M j 15Mi21Mi1Mi2~u i j
2 21!, ~B28!

12Mi1Mi22Mi2M j 15Mi1Mi2~u i j
2 11!, ~B29!

ai j 511SMj 11TMi1 , ~B30!

aji 511SMj 21TMi2 , ~B31!

S* 512u i j 2u i j S, ~B32!
02640
e

bi j 5aji 2
Mi1Mi2

ai j
~S* 21T212S* T cosx!, ~B33!

WW i5Mi1
1/2GW 02Mi2

1/2gW , ~B34!

WW j85M j 1
1/2GW 01M j 2

1/2gW 8. ~B35!

Using the relations~B30!, ~B31!, ~B32!, ~B34!, and~B35!, it
can be shown that

Hi j ~x!5E exp@2ai j G0
22aji g

212~Mi1Mi2!1/2GW 0•~S* gW 8

1TgW !#WW j8•WW idGW 0 . ~B36!

If, instead of choosingKi for the calculation of Eq.~B22!, K j
is used, the same result is obtained.

Let XW be such that@6#

XW 5GW 02
~Mi1Mi2!1/2

ai j
~S* gW 81TgW !. ~B37!

The Hi j (x) function is written with this variable change:

Hi j ~x!5E exp~2ai j X
22bi j g

2!WW j8•WW idXW . ~B38!

The scalar productWW j8•WW i is calculated with Eqs.~B34! and
~B35! and integration relationships given in Chapman a
Cowling @6#, so that

Hi j ~x!5p3/2e2bi j g
2
ai j

25/2~Mi1M j 1!1/2@ 3
2 1g2

3~12bi j 1Bi j 2Ai j cosx!# ~B39!

with

Ai j 5Mi2~12u i j !1a i j , ~B40!

a i j 5
miTj1mjTi

miTi1mjTj
, ~B41!

Bi j 5Mi2h i j ~12u i j !. ~B42!

So, using the fact that

e2bi j g
2
5e2g2

e~12bi j !g
2
5e2g2

(
r 50

`
~12bi j !

r

r !
g2r ,

~B43!

we get

Hi j ~x!5p3/2e2g2
ai j

25/2~Mi1M j 1!1/2(
r 50

`

~r 1 3
2 1g2

3$Bi j 2Ai j cosx%!
~12bi j !

r

r !
g2r . ~B44!
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After having calculated 12bi j thanks to its definition, it follows that

~12s!25/2~12t !25/2p23/2~Mi1M j 1!21/2Hi j ~x!

5e2g2

(
r 50

` H g2r

r !
~r 1 3

2 1g2$Bi j 2Ai j cosx%!

3
$2sMi12tM i2@11Mi1~u i j 21!~2 cosx1u i j 21!#12stMi1Mi2~12cosx!1Mi1Mi2~12u i j !

2%

$12sMi12tM i2@11Mi1~u i j
2 21!#%r 1~5/2! J . ~B45!
us

ec

el

ft-

lid-
Equation~B45! can be written as a series such that

~12s!25/2~12t !25/2p23/2~Mi1M j 1!21/2Hi j ~x!

5e2g2

(
qpr8l 8

Aqpr8l 8g
2r 8 cosl 8 x~Mi1s!p~Mi2t !q,

~B46!

whereAqpr8l 8 is a number depending onmi , mj , Ti , and
Tj .

The remaining calculation is not worth presenting beca
it is similar to that shown in@6#. Thus, only the final results
are given below.

@WW iS3/2
q ~Wi

2!;WW jS3/2
p ~Wj

2!# i j

58
~mi1mj !

3

~mimj !
3/2 u i j

3/2@11Mi1~u i j
2

21!#1/2Mi1
p12Mi2

q12 (
qpr8l 8

Aqpr8l 8V i j
~ l 8,r 8! ~B47!

with

f i j
~ l 8!5E

0

`

~12cosl 8 x!gb db, ~B48!

V i j
~ l 8,r 8!5p1/2E

0

`

e2g2
g2~r 811!f i j

~ l 8!dg. ~B49!

f i j
(l 8) andV i j

(l 8,r 8) are, respectively, the transport cross s
tion and the collision integral defined by Chapmanet al. @6#.

The Aqpr8l 8 numbers are obtained by using successiv
Newton binomial decompositions of expressions~B45!.
Thus, it can be shown using Eq.~B46! that

(
qpr8l 8

Aqpr8l 8g
2r 8 cosl 8 x

5( g2r~r 1 3
2 1g2$Bi j 2Ai j cosx%!~21! j 1 i

3@2~12cosx!#k2 j3~2 cosx1u i j 21! i

3~u i j 21!2r 1l 22k2m2 i~u i j 11! l 2mMi1
r 1l 2k2mMi2

r 2k2 i

3
~r 1 3

2 1l ! l ~ j 1m!!

j ! ~k2 j !! i ! ~r 2k2 i !!m! ~ l 2m!! ~ j 1m2n!!n!
,

~B50!
02640
e

-

y

where

h i j 5
mi

mj
, a i j 5

miTj1mjTi

miTi1mjTj
,

Ai j 5Mi2~12u i j !1a i j ,

Bi j 5Mi2h i j ~12u i j !.

The summation conditions are the following. For the le
hand side of Eq.~B51!,

0<r 8<p1q11,

0<l 8<q11.

For the right-hand side of Eq.~B51!,

0< j <k<r<p1q,

0< i<r 2k,

l 5p1q1 j 22k2 i ,

0<m<l ,

0<k1 i 1l 2q< j 1m,

n5k1 i 1l 2q.

3. Calculation of Jim
„0…

It has been shown that

Jim
~0!5E I i

~0!S1/2
m ~Wi

2!dvW i , ~B51!

where

I i
~0!5(

j 51

N E E E ~ f i8
~0! f j8

~0!2 f i
~0! f j

~0!!gb db de dvW j .

~B52!

Note that the calculation has been performed for two col
ing particlesi and j with different temperatures. Following
the previous expansions, it can be shown that

Jim
~0!52(

j 51

N

8ninj

~mi1mj !
3

~mimj !
3/2 ~Mi1Mi2!3/2u i j

3/2

3 (
mr8l 8

Dmr8l 8V i j
~ l 8,r 8! . ~B53!
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Dmr8l 8 are numbers depending onmi , mj , Ti , andTj and
are obtained using the following expression:

(
mr8l 8

Dmr8l 8g
2r 8 cosl 8 x

5(
rkl

g2r

~r 2k!!k! l !
@2Mi22Mi1Mi2~12u i j !

2

12Mi1Mi2~12u i j !cosx#k@Mi1Mi2~12u i j !
2# r 2k

3~12Mi1! l ~r 1 1
2 1l ! l . ~B54!
f
,

ro

m

E

-

a

em

p

r,

pl

02640
The conditions of summation are the following. For th
left-hand side of Eq.~B54!,

r 8,l 8<m.

For the right-hand side of Eq.~B54!,

0<k<r<m,

0<l <m,

l 5m2k.
ns.
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@16# P. André, IEEE Trans. Plasma Sci.23, 453 ~1995!.
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